Sequence-structure correlations in silk: Poly-Ala repeat of N. clavipes MaSp1 is naturally optimized at a critical length scale.
نویسندگان
چکیده
Spider silk is a self-assembling biopolymer that outperforms many known materials in terms of its mechanical performance despite being constructed from simple and inferior building blocks. While experimental studies have shown that the molecular structure of silk has a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies in particular under variations of genetic sequences have been reported. Here we report atomistic-level structures of the MaSp1 protein from the Nephila Clavipes spider dragline silk sequence, obtained using an in silico approach based on replica exchange molecular dynamics (REMD) and explicit water molecular dynamics. We apply this method to study the effects of a systematic variation of the poly-alanine repeat lengths, a parameter controlled by the genetic makeup of silk, on the resulting molecular structure of silk at the nanoscale. Confirming earlier experimental and computational work, a structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly β-sheet crystal domains while disorderly regions are formed by glycine-rich repeats that consist of 3(10)-helix type structures and β-turns. Our predictions are directly validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots combined with an analysis of the secondary structure content. The key result of our study is our finding of a strong dependence of the resulting silk nanostructure depending on the poly-alanine length. We observe that the wildtype poly-alanine repeat length of six residues defines a critical minimum length that consistently results in clearly defined β-sheet nanocrystals. For poly-alanine lengths below six, the β-sheet nanocrystals are not well-defined or not visible at all, while for poly-alanine lengths at and above six, the characteristic nanocomposite structure of silk emerges with no significant improvement of the quality of the β-sheet nanocrystal geometry. We present a simple biophysical model that explains these computational observations based on the mechanistic insight gained from the molecular simulations. Our findings set the stage for understanding how variations in the spidroin sequence can be used to engineer the structure and thereby functional properties of this biological superfiber, and present a design strategy for the genetic optimization of spidroins for enhanced mechanical properties. The approach used here may also find application in the design of other self-assembled molecular structures and fibers and in particular biologically inspired or completely synthetic systems.
منابع مشابه
Molecular mechanics of silk nanostructures under varied mechanical loading.
Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffnes...
متن کاملSequence - Structure Correlations in the MaSp 1 Protein of
Silk is a hierarchically structured protein fiber with exceptional tensile strength and extensibility, making it one of the toughest and most versatile biocompatible materials. While experimental studies have shown that the molecular structure of silk has a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assem...
متن کاملA two-dimensional spin-diffusion NMR study on the local structure of a water-soluble model peptide for Nephila clavipes dragline silk (MaSp1) before and after spinning
INTRODUCTION The dragline silk of the golden orb web spider Nephila clavipes has received significant attention because of its remarkable mechanical properties, which include toughness and high tensile strength.1,2 This silk contains two structural proteins designated as major ampullate spidroin 1 (MaSp1) and major ampullate spidroin 2 (MaSp2).3,4 The dominant MaSp1 can be described as AB block...
متن کاملNanostructure and molecular mechanics of spider dragline silk protein assemblies.
Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructur...
متن کاملMechanical and Physical Properties of Recombinant Spider Silk Films Using Organic and Aqueous Solvents
Spider silk has exceptional mechanical and biocompatibility properties. The goal of this study was optimization of the mechanical properties of synthetic spider silk thin films made from synthetic forms of MaSp1 and MaSp2, which compose the dragline silk of Nephila clavipes. We increased the mechanical stress of MaSp1 and 2 films solubilized in both HFIP and water by adding glutaraldehyde and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 7 شماره
صفحات -
تاریخ انتشار 2012